On the potential of Transformers in Reinforcement Learning
Transformers architectures are the hottest thing in supervised and unsupervised learning, achieving SOTA results on natural language processing, vision, audio and multimodal tasks. Their key capability is to capture which elements in a long sequence are worthy of attention, resulting in great summarisation and generative skills. Can we transfer any of these skills to reinforcement learning? The answer is yes (with some caveats). I will cover how it’s possible to refactor reinforcement learning as a sequence problem and reflect on potential and limitations of this approach.
Source: On the potential of Transformers in Reinforcement Learning, an article by Lorenzo Pieri.